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Best practices for differential accessibility
analysis in single-cell epigenomics

Alan Yue Yang Teo1,2, Jordan W. Squair 1,2,3,6 , Gregoire Courtine 1,2,3,6 &
Michael A. Skinnider 1,2,4,5,6

Differential accessibility (DA) analysis of single-cell epigenomics data enables
the discovery of regulatory programs that establish cell type identity and steer
responses to physiological and pathophysiological perturbations. While many
statistical methods to identify DA regions have been developed, the principles
that determine the performance of these methods remain unclear. As a result,
there is no consensus on the most appropriate statistical methods for DA
analysis of single-cell epigenomics data. Here, we present a systematic evalua-
tion of statistical methods that have been applied to identify DA regions in
single-cell ATAC-seq (scATAC-seq)data.We leverage a compendiumof scATAC-
seq experiments with matching bulk ATAC-seq or scRNA-seq in order to assess
the accuracy, bias, robustness, and scalability of each statistical method. The
structure of our experiments also provides the opportunity to define best
practices for the analysis of scATAC-seq data beyondDA itself. We leverage this
understanding to develop an R package implementing these best practices.

Protocol registration

The Stage 1 protocol for this Registered Report was accepted in principle on
25th October 2023. The protocol, as accepted by the journal, can be found at
https://doi.org/10.6084/m9.figshare.24541816.v1.

The remarkable diversity of cell types and tissues that compose the
human body arise from a single genome. This diversity is orchestrated
by cell-type- and context-specific epigenetic programs that regulate
the accessibility of specific regions of the genome1. Epigenetic reg-
ulatory programs also choreograph tissue- and cell-type-specific
responses to the myriad of endogenous and exogenous perturba-
tions that humans encounter in their lifetime2. The fundamental role of
these regulatory programs in health and disease spurred the devel-
opment of technologies to measure the accessibility of the genome3,4.
In turn, catalogues of genome accessibility promise to expose reg-
ulatory mechanisms that can be targeted therapeutically, and provide
genetic access to molecularly-defined cell types5–8.

Initial attempts to dissect these regulatorymechanisms employed
bulk assays that aggregated signals over the multitude of different cell
types within complex tissues9–13. More recently, the advent ofmethods
to measure genome accessibility at single-cell resolution enabled the
discovery of regulatory programs underlying the identity and differ-
entiation of individual cell types14–19. Among these, the assay for
transposase-accessible chromatin by sequencing (ATAC-seq) has
emerged as the workhorse of single-cell epigenomics. Landmark
single-cell ATAC-seq (scATAC-seq) studies established atlases of
chromatin accessibility during fetal development20–22, throughout the
nervous system23–25, and even within the entire human body26. Expo-
nential increases in the scale and availability of scATAC-seq are now
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triggering a transition from atlases of healthy tissues to dissection of
cell-type-specific regulatory responses to disease and experimental
perturbations7,27–30.

The rapid evolution and widespread application of technologies
to interrogate chromatin accessibility at single-cell resolution is
exposing a lack of consensus onhow to analyse the resultingdata. Even
fundamental questions, such as whether chromatin accessibility
should be considered a qualitative or quantitative measurement,
remain debated31,32. Arguably the most important of these questions is
how to identify differentially accessible (DA) regions of the genome.
DA analysis is the methodological framework that permits the dis-
covery of regulatory programs directing cell identity and perturbation
responses. However, existing analysis packages implement markedly
different approaches toDA33–43, and analyticalworkflows implemented
in different laboratories bear little resemblance to one another. This
discordance not only raises the question of which DAmethods are the
most accurate, but also whether widely used DA methods are statisti-
cally valid or even prone to false discoveries.

Methods for differential analysis of bulk ChIP-seq and ATAC-seq
datasets have previously been benchmarked44–46. These benchmarks not
only compared individual DAmethods, but also evaluated the impact of
factors such as sequencing depth, number of replicates, or the char-
acteristics of the underlying signal (e.g., broad histonemodifications vs.
sharp transcription factor (TF)-binding events45,46). However, these
benchmarks generally relied on simulations or a small number of case
studies with unclear ground truth, and did not address the new chal-
lenges raised by single-cell epigenomics, including the analysis of
markedly sparser datasets comprising thousands of cells.

In this Registered Report, we present a systematic comparison of
statistical methods that have been applied to identify DA regions in
scATAC-seq. To enable a comprehensive analysis, we undertook an

exhaustive review of the literature to chart the landscape of statistical
methods that have been used to perform DA analysis. We then applied
each of these methods to a compendium of scATAC-seq datasets with
matching bulk ATAC-seq or scRNA-seq datasets that provide a basis for
comparison. We carried out a series of experiments to quantitatively
assess the accuracy, bias, robustness, and scalability of eachmethod for
single-cell DA analysis. Moreover, these experiments also afforded us
the opportunity to study more fundamental questions in the analysis of
scATAC-seq, such as whether measurements within individual cells
should be treated as qualitative or quantitative observations. The results
of these experiments suggest best practices for the analysis of scATAC-
seq datasets mode broadly. We have translated this understanding into
an R package that implements these best practices in order to empower
users to perform accurate DA analysis in scATAC-seq data.

Results
Lack of consensus in single-cell DA analysis
We first sought tomap the landscape of statistical methods that have
been used to perform DA analysis. For this purpose, we conducted a
comprehensive survey of the single-cell epigenomics literature. We
identified a total of 118 primary publications that reported single-cell
epigenomic datasets (Supplementary Data 1). This survey confirmed
the widespread adoption of scATAC-seq (Fig. 1a). Chronological
analysis revealed that the number of cells profiled in any given study
has increased exponentially over time (Fig. 1b). Among the 13 statis-
tical methods for DA analysis that were detected in this survey, the
Wilcoxon rank-sum test was the most widely used (Fig. 1c). However,
no method was used in more than 15 studies, and many DA methods
were used in just one or two published analyses. Beyond this
unsettling observation, we also observed disagreement on funda-
mental principles of DA analysis, such as whether or not to binarize

Fig. 1 | Landscape of DA analysis for single-cell epigenomics. a Experimental
techniques used in 118 primary publications that reported single-cell epigenomic
datasets. Inset pie chart shows the proportion of studies (64%) that reported a DA
analysis. b Number of single cells profiled by scATAC-seq in 91 primary studies,
shown as a function of publication date to highlight exponential scaling of scATAC-
seq over time. Trend line and inset p-value, linear regression; shaded area, 95%
confidence interval. cStatisticalmethods forDAanalysis employed in 118 single-cell
epigenomics papers. DAmethods shown in grey will be considered in our analysis.
“Other” includes four additional methods used in just a single study. Inset pie chart
shows the total proportionof single-cell epigenomicspapers (94%) that employed a
DA analysis method considered in this Registered Report. d Proportions of single-

cell epigenomics studies that have treated the data as binary or continuous,
respectively, during DA analysis. e Default statistical methods for DA analysis
implemented in 13 single-cell analysis packages. Top, number of citations per
package. Right, total number of analysis packages in which each DA analysis
method is implemented as the default. fCumulative distribution functions showing
statistical properties of RNA-seq and ATAC-seq data from matching single cells.
ATAC-seq features (peaks) are characterized by a lower average sequencing depth
and a higher proportion of zeroes. Data is from a 10x multiome dataset from the
mouse spinal cord (Methods). Source data are provided as a Source Data file
(Source Data 1).
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measures of genome accessibility (Fig. 1d). This lack of consensus is
reflected in the variety of DA methods that are implemented by
default within the most widely used analysis packages for scATAC-
seq (Fig. 1e).

Our survey of the single-cell epigenomics literature highlighted
that the most widely used statistical methods in this field are based
on, or identical to, methods that were originally developed for
scRNA-seq. The application of similar statistical methodologies
contrasts with the different facets of biology measured by each
technology. Whereas scRNA-seqmeasures expressed genes, scATAC-
seqmeasures the accessibility of the entire genome, and accordingly,
we identified dramatic differences in the statistical features of
scATAC-seq compared to scRNA-seq data (Fig. 1f). In particular,
scATAC-seq measures a larger number of features compared to
scRNA-seq, and each of these features are quantified by fewer reads
and in fewer cells47. These biological and technological differences
raise the possibility that the statistical methods used for DE analysis
of scRNA-seq data may be ill-suited to DA analysis of scATAC-
seq data.

Epistemological framework for biologically accurate DA
analysis
If the most prevalent statistical methods are not optimised for DA
analysis, then they may overlook biological differences, or con-
versely, could lead to spurious discoveries. These possibilities com-
pelled us to conduct a comprehensive comparison of DA methods
for scATAC-seq data. As a prerequisite for such a comparison, we first
recognized the necessity of an epistemological framework that
would capture the biological accuracy of these methods48. Whereas
the majority of benchmarks in computational biology rely on simu-
lated datasets, we previously showed that these simulations fail to
appreciate essential aspects of biological data generation, and
therefore lead to unreliable conclusions49. Instead, we showed that
comparisons of statistical methods based on real datasets with
experimental ground truth do capture biological differences in the
performance of these methods. In the context of scRNA-seq data, we
showed that a close approximation to the ground truth can be
obtained from matched bulk and scRNA-seq performed on the same
population of purified cells, exposed to the same perturbation, and
sequenced in the same laboratory.

We hypothesized that a similar epistemological framework
would allow us to establish the biological accuracy of statistical
methods for DA analysis. To enable this framework, we identified a
series of published datasets in which matched bulk and single-cell
ATAC-seq were used to profile the same populations of purified cells
within the same laboratories. These matched bulk datasets provide a
mechanism to evaluate the biological accuracy of single-cell DA
methods.

We also postulated that the development of single-cell multi-omic
assays50, in which the epigenome and transcriptome are profiled in the
same individual cells, would provide the opportunity to extend this
epistemological framework. Concretely, epigenomic measurements
from multi-omic assays can be aggregated to the level of genes, and
therefore, we reasoned that these assays would allow us to compare
DA and DE within the same individual cells. The biological hypothesis
underlying this experiment is that DE genes expressed across biolo-
gical conditions are likely to have promoters that are DA within the
same individual cells. Previous work has established that this
assumption holds across the genome as a whole when DE and DA are
measured systematically51–53.

The third and final component of our epistemological framework
is the recognition that the biological accuracy of any statisticalmethod
is contingent on its ability to avoid producing false discoveries49. We
therefore compared DA methods based on their ability to avoid false
discoveries in the absence of any true biological differences.

Experiment 1: Evaluating single-cell DA methods with matched
bulk data
We first used our assembled compendiumofmatched bulk and single-
cell ATAC datasets to evaluate the biological accuracy of each single-
cell DA method, using the bulk data as a reference. Our survey of the
literature identified five studies in which matching single-cell and bulk
epigenomics data were collected from the same populations of pur-
ified cells and sequenced within the same laboratory (Fig. 2a). These
studies collected between two to four scATAC-seq libraries per con-
dition (Supplementary Data 2). We performed DA analysis of both the
bulk and single-cell ATAC-seq datasets, using each of the 11 DA
methods that had been employed by at least two publications at the
time of our literature review. We measured the concordance between
single-cell and bulk DA analyses using the area under the concordance
curve (AUCC)54, as employed by previous benchmarks of DE methods
for single-cell transcriptomics data49,55.

In our primary analysis, we observed that most DA methods
achieved comparable performance, with relatively small differences
separating the ten top-performing methods (Fig. 2b). Among these,
methods that aggregated cells within biological replicates to form so-
called ‘pseudobulks’ consistently ranked near the top. In contrast,
negative binomial regression and a previously described permutation
test19 were outliers that achieved substantially lower concordance to
the bulk data than other DA methods.

We conducted a series of sensitivity analyses to test the robustness
of these observations. First, we found that the performance of single-
cell DA methods was largely unchanged when applying different DA
approaches to establish the experimental ground truth within the bulk
data (Supplementary Fig. 1a, b). Moreover, we obtained broadly con-
sistent resultswhen varying thenumber of top-rankedDApeaks used to
calculate the AUCC, or when filtering peaks that were not accessible in
at least 5% of cells (Supplementary Fig. 1c). Because calculating the
concordance between DA analyses of single-cell and bulk ATAC-seq
requires a matching set of peaks to be defined in both datasets, we also
explored the impact of varying this peak set. In all of the above analyses,
we had called peaks in the matched bulk ATAC-seq data, but widely
used software packages such as Signac35, ArchR33, and SnapATAC34

insteadcall peaks in ‘pseudobulk’ samples createdbypooling the single-
cell data.We found that this procedure improvedconcordancebetween
single-cell and bulk ATAC overall, but that the relative performance of
single-cell DA methods remained similar (Supplementary Fig. 1d). To
address the possibility that artefacts in peak calling might confound
these results, we also devised a procedure to introduce spurious peaks
into thepeak sets, and found that the relative performanceof the single-
cell DA methods was largely robust to the presence of noise (Supple-
mentary Fig. 1e). Finally, we evaluated concordance separately for peaks
in promoter versus enhancer regions, and found that differences
between DA methods were apparent primarily in the latter (Supple-
mentary Fig. 1f).

Experiment 2: Evaluating single-cell DAmethods with single-cell
multi-omics
We next identified four studies that employed multi-omic assays to
quantify both gene expression and chromatin accessibility across
tens of thousands of nuclei, each profiling between two and 13
replicates (Supplementary Data 2), and leveraged these datasets to
repeat the comparisons of single-cell DA methods described in
Experiment 1, now using gene expression as the reference (Fig. 2c).
To enable comparison between the ATAC and RNA modalities, we
aggregated chromatin accessibility around promoters into gene-
level activity scores, as implemented in a number of widely used
software packages33,35,56. We then tested for differences in chromatin
accessibility at the gene level, using the DE results from thematching
RNA modality to define the reference. Moreover, we performed GO
enrichment analyses of the differentially accessible genes, and
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evaluated the concordance between GO enrichment analyses of the
ATAC and RNA modalities.

In our primary gene-level analysis, we identified a more pro-
nounced difference between DA methods that aggregated cell-level
chromatin accessibility profiles into ‘pseudobulks’ and those that did
not, as compared to Experiment 1 (Fig. 2d). The former outperformed
the latter, although all pseudobulk methods achieved comparable
performance to one another.

We conducted a series of sensitivity analysis to assess the
robustness of this result. First, we verified that these results were
not confounded by geneswith overlapping promoter regions, since
removing these genes led to slightly improved concordance but
had little impact on the relative performance on single-cell DA
methods (Supplementary Fig. 2a). We also confirmed that these
results were largely unchanged when (i) applying different statis-
tical approaches to establish the experimental ground truth within
the RNA modality; (ii) varying the number of top-ranked DA genes
used to calculate the AUCC, or (iii) filtering genes whose promoters
were not accessible in at least 1% of cells (Supplementary Fig. 2b–d).
Finally, previous work has shown that inferences about DE are
generally more accurate for highly expressed genes57,58, whereas
identifying instances of true DE among lowly-expressed genes can
be challenging49. These observations raised the possibility that

inaccurate inferences about DE for lowly-expressed genes might
confoundour analysis. Therefore, we re-evaluated the concordance
after excluding the bottom tercile of lowly-expressed genes, and
found that the relative performance of DA methods was essentially
unchanged (Supplementary Fig. 2e).

In our primary Gene Ontology-level analysis, we again observed
that the four top-performing methods all aggregated cells to form
pseudobulks (Fig. 2e). We then repeated each of the above sensitivity
analyses at the level of Gene Ontology terms. In general, the relative
performance of single-cell DAmethods was robust to the procedures
used to identify the experimental ground truth within the RNA
modality, varying the number of top-ranked GO terms used to cal-
culate the AUCC, or filtering genes whose promoters were not
accessible in at least 1% of cells (Supplementary Fig. 3b–d). In con-
trast, the relative performance of single-cell DA methods was
somewhat more sensitive to the removal of genes with overlapping
promoters or by the removal of lowly-expressed genes in the RNA
modality, both of which improved the performance of the t-test
(Supplementary Fig. 3a, e).

Notably, in all twelve primary and sensitivity analyses at the gene
and GO term levels, a pseudobulk DA method achieved the best per-
formance. Moreover, no pseudobulk DA method ranked among the
bottomhalf of lowest-performingDAmethods in anyof these analyses.

Fig. 2 | Evaluating single-cell DA methods with matched bulk data and single-
cell multi-omics. a Design of Experiment 1. DA analysis was performed between
cell types or conditions for single-cell datasets with matching bulk ATAC-seq as a
reference. Peaks were called either in the bulk ATAC-seq data (primary analysis) or
in pseudobulk single-cell data (sensitivity) analysis). b Area under the concordance
curve (AUCC) for single-cell DA methods in Experiment 1, using matching bulk
ATAC-seq as a reference (n = 16 comparisons). Inset text shows the median AUCC.
Methods that aggregate counts within replicates to form ‘pseudobulks’ are shown
in shades of red; one method that aggregates counts across replicates is shown in

green; and methods that do not aggregate information across cells are shown in
blue. cDesign of Experiment 2. DA analysiswasperformed between cell types using
matched scRNA-seq data from the same cell as a reference, comparing DA of
genomic intervals around the TSS to gene-level differential expression (n = 306
comparisons). d Area under the concordance curve (AUCC) for single-cell DA
methods in Experiment 2, using matching snRNA-seq as a reference. Inset text
shows the median AUCC. e As in d but showing concordance at the level of GO
terms enriched among DA peaks. Source data are provided as a Source Data file
(Source Data 2).
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Experiment 3: False discoveries in single-cell DA
The possibility of profiling hundreds of thousands of cells with single-
cell epigenomics presents both opportunities and challenges. On one
hand, the statistical power afforded by scATAC-seq data should enable
the detection of subtle changes in chromatin accessibility between
conditions or cell types. On the other hand, these subtle changes may
represent technical artefacts or even false discoveries rather than true
biological differences. We exposed similar opportunities and chal-
lenges in our recent analysis of DEmethods for scRNA-seq, wherein we
found that many of the most widely used methods can produce
thousands of false discoveries in routine experiments49. We investi-
gated whether similar phenomena arise in scATAC-seq data. For this
purpose, we conducted a series of analyses to assess the emergence of
false discoveries in DA analyses of both real and simulated datasets.

Wefirst investigated the emergenceof falsediscoveries in random
comparisons of cells from the same experimental condition. For this
purpose, we repurposed a large scATAC-seq dataset59 to create artifi-
cial comparisons between cells from identical experimental condi-
tions, with the expectation that any regions that are called asDA reflect
statistical false discoveries rather than instances of true DA (Fig. 3a). In
our primary analysis, we found that several widely-used DA methods
identified thousandsofdifferentially accessible peaks in the absenceof

any biological differences (Fig. 3b). Strikingly, the three most fre-
quently used DA methods in our survey of the literature (Wilcoxon
rank-sum test, LRclusters, and LRpeaks; Fig. 1c) identified a median of
4664, 2505, and 8721 DA peaks within any given cell type. Conversely,
methods that aggregated single-cell chromatin accessibility profiles to
form pseudobulks never identified more than a median of 9 DA peaks
in these random comparisons.

The premise of the above experiment is that any regions that are
identified as DA between pairs of randomly assigned replicates are
unlikely to represent biological differences. However, the nature of
real-world data does not allow us to formally exclude the possibility
that heterogeneity between replicates introduces true biological dif-
ferences. Therefore, we complemented our re-analysis of published
data with two simulation studies. In the first of these, we downsampled
bulkATAC-seq libraries to simulate scATAC-seqdatawith nobiological
cell-to-cell variation at all34. In our primary analysis, we again observed
that several widely-used DA methods produced thousands of false
discoveries, but that pseudobulk methods were much less prone to
false discoveries (Fig. 3c).

To achieve more precise control over the composition and prop-
erties of simulated scATAC-seq datasets, we leveraged a simulation
framework originally developed for scRNA-seq data60. We fit the

Fig. 3 | False discoveries in single-cell DA analysis. a Schematic overview of
Experiment 3.1. Bonemarrowmononuclear cells fromhealthy donorswere profiled
by Luecken et al.59 in 13 independent replicates. For each cell type, half of these
replicates were assigned to an artificial ‘control’ group, and the other half to an
artificial ‘treatment’ group. DA analysis was then performed between cells from
randomly assigned replicates. b Number of DA peaks detected between randomly
assigned replicates at 5% FDR within each cell type in random comparisons of
published scATAC-seq data (n = 21 comparisons). Inset text shows the median
number of DA peaks per method. c As in b but showing the number of DA peaks

detected at 5% FDR inDA analysis of downsampled bulk ATAC-seq librarieswithout
biological differences between experimental conditions. d As in b but showing the
number of DApeaks detected at 5% FDR inmodel-based simulations of scATAC-seq
data without biological differences between experimental conditions. e As in b but
showing the number ofDApeaks detected at 5%FDR inmodel-based simulations of
scATAC-seq data without biological differences between experimental conditions,
with variation in sequencing depth between libraries. Source data are provided as a
Source Data file (Source Data 3).
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parameters of this simulation to scATAC-seq data, and used the result-
ing model to simulate datasets that varied in the number of cells and
libraries sequenced and the degree of technical variation between
libraries. In our primary analysis, we again identified thousands of
false discoveries from widely-used DA methods (Fig. 3d). However, we
observed differences in the specific DA methods that were most prone
to producing false discoveries in this simulation setup, as compared to
either null comparisons of real scATAC-seq data or the simulation above
based on downsampling bulk ATAC-seq data. We cannot exclude that
these differences reflect an artefact of this simulation framework.

In secondary analyses, we established that the number of false
discoveries was exacerbated by sequencing a greater number of cells
or increasing technical variation between libraries, whereas it was
reduced by profiling a larger number of replicates (Supplementary
Fig. 4a–c). These observations are consistent with the notion that
accounting for biological and technical variation between replicates is
critical to controlling the false discovery rate49.

In our primary analysis, each replicate was simulated with the
same sequencing depth,which is in contrast to the variable sequencing
depths of replicates in real-world datasets. Therefore, we also carried
out a secondary analysis whereby we deliberately simulated replicates
with different sequencing depths (Supplementary Fig. 4d). This
simulation markedly increased the number of false discoveries
returned by most single-cell DA methods, although pseudobulk
methods remained robust to false discoveries (Fig. 3e).

Together, these experiments emphasized that many widely used
single-cell DA methods can produce thousands of false discoveries.
Notably, these false discoveries were exaggerated when simulating
more technically or biologically heterogeneous libraries. Conversely, DA
methods that aggregated cells within replicates to form pseudobulks
showed a markedly improved capacity to avoid false discoveries. We
therefore also studied other strategies to account for variation between
replicates in DA analysis. First, we explored the impact of including
replicate as a fixed effect in generalized linear models. Second, we also
considered replicate as a random effect by fitting negative binomial
generalized linear mixed models (GLMMs)61. These experiments
revealed that incorporating replicate as a fixed effect did not decrease,
and sometimes increased, the number of false discoveries. However,
incorporating replicate as a random effect enabled DA analysis without
false discoveries (Supplementary Fig. 4e).

Experiment 4: Evaluating biases of single-cell DA methods
It is now well-established thatmany statistical methods for DE analysis
of both bulk and single-cell RNA-seq data exhibit biases in the types of

genes that are preferentially identified as DE49,55,57,58,62. However, it
remains unclear whether similar biases may affect DA analyses of
scATAC-seq data. We hypothesized that the same biases that affect
scRNA-seq data could manifest in scATAC-seq data as a bias of DA
methods to preferentially identify peaks that are open in a larger
proportion of cells, peaks that are supported by a greater number of
sequencing reads, or peaks that are wider. To address these possibi-
lities, we conducted a series of experiments using both real and
simulated data to addresswhether these biases affected DA analysis of
scATAC-seq data.

We first characterized the properties of DA peaks in the same
published scATAC-seq datasets examined in Experiment 1. To control
for differences in the total number of peaks called as DA by each
statistical method, we ranked peaks by their p-values and limited our
analysis to the top-1000 DA peaks called by each method. In our
primary analysis, we identified a number of differences in the char-
acteristics of the peaks preferentially called as DA by each method.
Methods that treated chromatin accessibility as a quantitative mea-
surement (t-test, Wilcoxon rank-sum test, negative binomial regres-
sion, LRclusters) preferentially called peaks supported by a greater
number of reads, and open in a greater number of cells, as being DA
(Fig. 4a, b). In contrast, methods that treated accessibility as a binary
phenotype (Fisher’s exact test, LRpeaks, binomial test, permutation
test), as well as pseudobulk DA methods and SnapATAC’s findDAR
test, exhibited less bias towards highly accessible peaks. We
observed less variability in the widths of peaks preferentially called
as DA by each method, with the notable exception of negative
binomial regression, which consistently called wider peaks as
DA (Fig. 4c).

In secondary analyses, we varied the number of top-ranked DA
peaks considered by characterizing the top-500 or top-5000DA peaks
called by each method. The trends observed for the top-1000 DA
peaks were broadly conserved in this analysis (Supplementary Fig. 5).

Next, we sought to specifically characterize the peaks that were
spuriously called as DA in Experiment 3. We binned peaks into deciles
according to each of the properties studied above, and computed both
the absolute number as well as the proportion of false discoveries aris-
ing from each decile. Across all three false discovery experiments, most
DA methods exhibited biases towards peaks supported by a large
number of reads, which were open in a greater proportion of cells, and
broader peaks (Supplementary Figs. 6–8). In contrast, methods that
aggregated cells to form pseudobulks exhibited a lesser degree of bias,
when they identified any false discoveries at all. Unexpectedly, we found
that SnapATAC’s findDAR test exhibited an unusual pattern of bias,

Fig. 4 | Biases in single-cell DA analysis. a Mean read depth of the top-1000 DA
peaks identified by each single-cell DA method in published scATAC-seq datasets
(n = 16 comparisons). Inset text shows themedian across comparisons.bAs in abut

showing theproportionof cells inwhich thesepeaks are open. cAs in abut showing
the width of each peak.
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whereby false discoveries preferentially arose from genes with inter-
mediate expression.

Experiment 5: Impact of log-fold change filtering
Differential analyses of ATAC-seq data may discard differentially acces-
sible regions with a log-fold change below an arbitrary threshold, on the
grounds that regions with small fold changes are unlikely to be biolo-
gically relevant44. Similar practices are ubiquitous in the analysis of other
sequencing-based technologies, such as RNA-seq, where the choice of
log-fold change threshold may alter the biological interpretation of a
given experiment63. These observations motivated an empirical assess-
ment of the impact of log-fold change filtering on single-cell DA analysis.

We recognized that the quantitative measures of perfor-
mance evaluated in these experiments (AUCC or number of false
discoveries) are sensitive to the total number of peaks being
tested. This introduces a potential confounding factor, in that
simply filtering peaks at random would also be expected to
increase the AUCC and decrease the number of false discoveries.
To account for this effect, for each log-fold change threshold, we
tested the effect of removing an equal number of peaks from the
dataset at random. We then used this data to determine whether
filtering by log-fold change increased the AUCC or decreased the
number of false discoveries to a degree greater than random.

We first examined the concordance of DA between scATAC-seq
and matching bulk ATAC-seq. As expected, increasingly stringent log-
fold change filters increased concordance for all DA methods. How-
ever, the same effect was also seen when removing equivalent num-
bers of random peaks (Supplementary Fig. 9). When controlling for
random peak filtering, we observed that the concordance initially
decreased when filtering up to 70% of peaks based on log-fold change,
and then increasedwhenfiltering 80%ormore ofpeaks. To summarize
these trends, we visualized the effect size of log-fold change filtering
across all DA methods, compared to random peak filtering (Fig. 5a).

We next examined the concordance of DA between the ATAC and
RNA modalities of single-cell multi-omics data. This analysis recapitu-
lated the risks of log-fold change filtering. In this experiment, we found
that log-fold change filtering consistently decreased concordance,
relative to randomfiltering,when removing up to 90%of genes (Fig. 5b
and Supplementary Fig. 10).

Last, we tested the impact of log-fold change filtering on the
appearance of false discoveries. Relative to random filtering, we con-
sistently observed more false discoveries across all DA methods when
filtering by log-fold change (Fig. 5c and Supplementary Fig. 11).

Experiment 6: Best practices for scATAC-seq analysis
Our survey of the literature identified substantial discordance not
just in the methods used for DA analysis, but even in the repre-
sentations of scATAC-seq data that are provided as input to these
methods (Fig. 1d). Indeed, fundamental concepts in the representa-
tion of scATAC-seq data remain subjects of ongoing debate. Perhaps
the most notable among such concepts is whether to treat scATAC-
seq data as a qualitative measurement by binarizing genome
accessibility31,32. We askedwhether the setting of DA could provide an
opportunity to address this question. Specifically, we hypothesized
that the accuracy of DA analysis could be used as a litmus test, in that
approaches to scATAC-seq data preprocessing that enable more
accurate and robust DA analysis are likely to also provide more
accurate results at other steps in the analytical workflow. Accord-
ingly, we repeated a subset of the analyses described above using
binarized representations of the scATAC-seq datasets, with the aim
of characterizing the effect of binarization on the biological
accuracy, false discovery control, and biases of DA methods for
scATAC-seq data.

We first tested whether binarizing scATAC-seq data would
improve the biological accuracy of DA analysis, as quantified by the
concordance to matching bulk ATAC-seq. Surprisingly, we found that
binarizing scATAC-seq data generally increased the concordance
between scATAC-seq and bulk ATAC-seq data, and the magnitude of
this improvement was largest for the worst-performing DA methods
(Fig. 6a and Supplementary Fig. 12a). The relative performance of DA
methods was largely unchanged by binarization, with the exception of
SnapATAC’s findDAR test, which improved to rank among the top-
performing methods when applied to binarized data.

We next asked whether binarizing scATAC-seq data could miti-
gate the appearance of false discoveries. This analysis yielded ambig-
uous results (Fig. 6b–d and Supplementary Fig. 12b–d). A subset of DA
methods, including SnapATAC’s findDAR test and negative binomial
regression, consistently produced fewer false discoveries when
applied to binarized data, although the magnitude of this decrease
varied markedly across experiments. For the remaining DA methods,
binarization did not have a consistent effect on the number of false
discoveries.

We then investigated whether binarization modulated the biases
of DA methods. Interestingly, in published scATAC-seq data, binar-
ization attenuated the biases of some DA methods towards calling
highly accessiblepeaks as DA (Fig. 6e–f and Supplementary Fig. 13a, b),
although this attenuation was less apparent for methods that

Fig. 5 | Impact of log-fold changefilteringon single-cell DAanalysis. a Effect size
(Cohen’s d) of increasingly stringent log-fold changefiltering on the AUCCbetween
single-cell and bulk ATAC-seq DA, relative to the removal of an equivalent number
of peaks selected at random (n = 16 comparisons). Inset text shows the median

Cohen’s d. b As in a but for the AUCC between the ATAC and RNA modalities of
single-cell multi-omics data (n = 306 comparisons). c As in a but for the number of
false discoveries in null comparisons of published scATAC-seq data (n = 21
comparisons).
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aggregated cells to form pseudobulks, since these biases were not
apparent to beginwith.Moreover, we observed that, for virtually every
DA method, binarizing scATAC-seq data led narrower peaks to be
called as DA (Fig. 6g and Supplementary Fig. 13c).

We additionally sought to specifically characterize the peaks that
were spuriously called as DA before and after binarization, but found
that binarization did not alter the more general tendency for false
discoveries to preferentially arise from more accessible and wider
peaks (Supplementary Figs. 14–16).

Collectively, these results suggest that binarization can improve
the biological accuracy of DA analysis, and this effect is observed for
virtually every DAmethod included in our analysis. This observation is

at oddswith the argument that binarization is anunnecessary step that
discards quantitative data collected in scATAC-seq experiments31,32.
We suggest that this apparent paradox can be reconciled by the
observation that binarization generally reduces the biases of DA
methods towards more accessible and wider peaks, even for DA
methods that are less affected by these biases in the first place, and
that mitigating these biases can outweigh the potential negative
effects of binarization.

Another important open question in the analysis of scATAC-seq
data is whether and how this data should be normalized prior to DA
analysis. The majority of the DA methods considered in this study
operate directly on count matrices or binarized data. However, three
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methods (t-test, Wilcoxon rank-sum test, and LRclusters) are generally
applied to normalized data, with the expectation that normalization is
required to produce biologically accurate results. We therefore sur-
veyed the literature to identify the approaches to normalization that
are most commonly applied to scATAC-seq data, and then evaluated
the impact of normalization on the performance of these three DA
methods.

We first tested the impact of normalization on the biological
accuracy of DA analysis, as quantified by the concordance tomatching
bulk ATAC-seq. In this analysis, no approach consistently improved
over log-TP10K normalization (Fig. 6h and Supplementary Fig. 17a).
The lone exception was the combination of TF-IDF normalization and
the t-test, which demonstrated improved concordance relative to log-
TP10K normalization.

We then asked whether specific approaches to normalization
could mitigate the appearance of false discoveries. We found that the
number of false discoveries was consistently reduced after applying
TP10K or TP(median) normalization (Fig. 6i–k and Supplementary
Fig. 17b–d). However, these two approaches did not improve, and in
some cases decreased, the concordance between single-cell and bulk
ATAC-seq data (Fig. 6h). On the other hand, the combination of TF-IDF
normalization with the t-test, which increased the concordance
between single-cell and bulk ATAC-seq data, also increased the num-
ber of false discoveries.

We further studied the relationship between normalization
and the biases of DA methods. Interestingly, this analysis showed
that numerous approaches to normalization can reduce the biases
of DAmethods towards highly accessible or broad peaks, relative to
log-TP10K normalization (Fig. 6l–n and Supplementary Fig. 18). We
additionally sought to specifically characterize the peaks that were
spuriously called as DA under different normalization strategies,
but this analysis failed to identify trends thatwere consistent across
both DA methods and normalization strategies, and no method
altered the global pattern whereby false discoveries preferentially
arose from more accessible and wider peaks (Supplementary
Figs. 19–26).

Collectively, these results do not provide strong support for any
alternative approach to normalization as compared to log-TP10K,
which is the default approach implemented in several of the most
widely used analysis packages33,35 for DA analysis. This conclusion is in
line with a more systematic benchmark of normalization approaches
to scRNA-seq data, which also highlighted the strong performance of
log-TP10K normalization64.

Last, we evaluated a procedure proposed by the authors of ArchR
to control for technical artefacts in DA analysis. For any given set of
‘foreground’ cells (e.g., cells of a particular type), ArchR constructs a
set of ‘background’ cells of equal size that are matched according to a
series of technical properties. By default, TSS enrichment and log10(#
of fragments) are used to select a matching set of ‘background’ cells.

This approach inherently entails a trade-off whereby correcting for
potentially confounding artefacts comes at the cost of using only a
subset of the available data for analysis. Indeed, across all compar-
isons, we found that the ArchR background matching procedure
substantially reduced the number of cells considered in any given DA
analysis, from a mean of 4495 to 1264 cells per comparison (Fig. 6o).
This decrease in the number of cells considered appeared to outweigh
the positive impacts of controlling for technical variation, since we
identified a uniform decrease in the AUCC across all DA methods
considered (Fig. 6p–q).

Experiment 7: Data requirements for single-cell DA analysis
The scale of scATAC-seq datasets is increasing exponentially (Fig. 1b).
On one hand, the availability of hundreds of thousands of cells per
dataset could increase the statistical power of DA analysis. On the
other hand, past work in single-cell transcriptomics65 reported that the
number of cell types identified per studywas closely linked to the total
number of individual cells sequenced in that study. This observation
suggests that the increased statistical power afforded by a greater
number of cells could be offset by an increased granularity of DA
comparisons, each leveraging proportionally fewer cells. Moreover,
many of the largest datasets are very sparse: for instance, the single-
cell map of chromatin accessibility across 30 tissues reported by
Zhang et al.26 demonstrated amedian of just ~2800 fragments per cell.
These trends raise the question ofwhatminimum sequencing depth or
number of cells are required for accurate DA analysis.

To address these questions, we performed downsampling ana-
lyses of the sequencing depth or number of cells per dataset. We first
studied the effect of sequencing depth on the biological accuracy of
DA analysis by downsampling the plate-based datasets used in
Experiment 1 to a mean of 500, 1000, 2000, 5000, or 10,000 counts
per cell. We quantified the effect of downsampling on the AUCC by
calculating Cohen’s d relative to the DA analysis on 10,000 counts per
cell. We identified a decrease in the concordance between single-cell
and bulk DA in each case, as expected, with no evidence of saturation,
suggesting that DA analysis continues to benefit from
deeper sequencing up to at least 10,000 fragments per cell (Fig. 7a and
Supplementary Fig. 27a).

We next investigated the minimum number of cells required for
accurateDAanalysis. To this end,wedownsampled thenumber of cells
within the droplet-based datasets used in Experiment 2.We limited our
analysis to comparisons in which at least 1000 cells were sequenced in
each experimental condition, and quantified the effect of down-
sampling on the AUCC by calculating Cohen’s d relative to the DA
analysis on 1000 cells per condition. In this analysis, the AUCC began
to saturate when exceeding 300 cells per condition, although the
degree and rate of saturation varied across individual DA methods
(Fig. 7b and Supplementary Fig. 27b). These findings suggest that
accurate single-cell DA analysis can be achieved with as few as 50–100

Fig. 6 | Best practices for scATAC-seq analysis. a Area under the concordance
curve (AUCC) for single-cell DA methods using matching bulk ATAC-seq as a
reference, before and after binarization (n = 16 comparisons). Inset text shows the
median AUCC. b Number of DA peaks detected between randomly assigned
replicates at 5% FDR in random comparisons of published scATAC-seq data, before
and after binarization (n = 21 comparisons). Inset text shows themedian number of
DA peaks. c As in b but in downsampled bulk ATAC-seq libraries. d As in b but in
model-based simulations of scATAC-seq data. e Mean read depth of the top-1000
DA peaks identified by each single-cell DA method in published scATAC-seq data-
sets, before and after binarization. Inset text shows the median. f As in e but
showing theproportionof cells inwhich thesepeaks areopen.gAs in ebut showing
the width of each peak. h Effect size (Cohen’s d) of alternative approaches to
normalizationof scATAC-seq data on theAUCCbetween single-cell and bulkATAC-
seq DA, relative to log-TP10K normalization (n = 16 comparisons). i As in h but

showing the number of DA peaks detected between randomly assigned replicates
at 5% FDR in randomized comparisons of published scATAC-seq data (n = 21 com-
parisons). j As in i but in downsampled bulk ATAC-seq libraries. k As in i but in
model-based simulations of scATAC-seq data. l As in h but showing the mean read
depth of the top-1000 DA peaks identified by each single-cell DA method in pub-
lished scATAC-seq datasets.m As in l but showing the proportion of cells in which
these peaks are open. n As in l but showing the width of each peak. o Number of
cells considered per comparison, before and after controlling for technical cov-
ariates using the ArchR background-matching procedure (n = 322 comparisons).
Inset text shows the median. p Area under the concordance curve (AUCC) for
single-cell DA methods using matching bulk ATAC-seq as a reference, before and
after controlling for technical covariates using the ArchR background-matching
procedure (n = 16 comparisons).q Effect size (Cohen’s d) of the ArchR background-
matching procedure on the AUCC between single-cell and bulk ATAC-seq.
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cells, and that sequencing more than 300 cells per condition yields
diminishing returns.

Experiment 8: Scalability of single-cell DA methods
The scale of single-cell epigenomics is continuing to increase. This
observation underscores the need to evaluate the computational
scalability of methods for DA analysis. Accordingly, wemeasured both
the wall time and peakmemory usage of each single-cell DAmethod in
Experiments 1 and 2. We observed that the single-cell DA methods
compared here varied by several orders of magnitude in both runtime

and memory usage (Fig. 8a–d). Negative binomial regression, both
variants of logistic regression, and the t-test typically required more
than an hour to perform a single comparison within multiome data-
sets. Conversely, pseudobulk DA methods and SnapATAC’s findDAR
test were consistently among the most time- and memory-efficient
methods, suggesting these methods could most readily scale to
datasets comprising millions of cells. Moreover, whereas the compu-
tational requirements of all DA methods scaled with the number of
cells in the dataset, this relationshipwas attenuated for these same five
methods (Supplementary Fig. 28).

Fig. 7 | Data requirements for single-cell DA analysis. a Effect size (Cohen’s d) of
downsampling plate-based scATAC-seq data to a mean of 500, 1000, 2000, 5000
counts per cell on the AUCC for single-cell DAmethods usingmatching bulk ATAC-
seq as a reference, relative to DA analysis of the same datasets with a mean of
10,000 counts per cell (n = 16 comparisons). Inset text shows themedianCohen’sd.

b Effect size (Cohen’s d) of downsampling single-cell multi-omics data to 20, 50,
100, 200, or 500 cells per condition on the AUCC between the ATAC and RNA
modalities, relative to DA analysis of the same datasets with 1000 cells per condi-
tion (n = 306 comparisons). Inset text shows the median Cohen’s d.

Fig. 8 | Scalability of single-cell DA methods. a Wall clock time required by each
DAmethod to execute each comparison in Experiment 1 (n = 16 comparisons). Inset
text shows the median runtime in minutes. b Peak memory usage of each DA
method while executing each comparison in Experiment 1 (n = 16 comparisons).
Inset text shows the median peak memory usage in GB. c As in a but for each
comparison in Experiment 2 (n = 306 comparisons). d As in b but for each

comparison in Experiment 2 (n = 306 comparisons). e Wall clock time required by
alternative implementations of three DA methods (t-test, Wilcoxon rank-sum test,
and negative binomial regression). Inset text shows themedian runtime inminutes.
***p < 10–15, two-sided paired t-test. f As in e but showing peak memory usage by
each alternative implementation. Inset text shows the median peak memory usage
in GB. ***p < 10–15, two-sided paired t-test.
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For some of the DAmethods considered in our analysis, different
implementations areprovided inwidely-used softwarepackages, some
of which have been reported to offer speed-ups of several orders of
magnitude66. These methods include the Wilcoxon rank-sum test
(Signac vs. ArchR), the t-test (Signac vs. ArchR), and negative binomial
regression (Signac vs. glmGamPoi67). For these three DA methods, we
tested both available implementations. We observed that optimized
implementations of these methods can markedly reduce the compu-
tational resources required to execute any givenDAanalysis (Fig. 8e, f).

Performance of DA methods across experiments
To summarize our findings, we divided DAmethods into top-, middle-,
and bottom-performing terciles on each task that involved a quanti-
tative comparison of DAmethods (Fig. 9). This visualisation reinforced
the excellent performance of pseudobulk DAmethods across all of the
experiments in this study. We suggest that these methods should be
considered a first choice approach for the DA analysis of scATAC-seq
data. We did not include mixed models in our primary analyses
because they had not been used in a published study at the time of our
literature review; however, we hypothesize that these may also offer
improved performance relative to the methods that are most widely
used at present (Supplementary Fig. 4e), albeit at the cost of sub-
stantially increased runtime and memory requirements49.

Exploratory analyses
During the peer review of this manuscript, the reviewers suggested
additional analyses that had not been preregistered. In this section, we
present the results of these post hoc, unregistered analyses.

First, we found that the concordance between single-cell and bulk
ATAC-seq data was substantially higher for peaks located in promoter
regions than for those located in enhancers (Supplementary Fig. 1f).
Whereas our data does not allow us to establish a definitive causal
explanation for this phenomenon, we found that peaks in promoter
regions tended to be open in a greater number of cells, and supported
by a greater number of reads, as compared to promoter regions
(Supplementary Fig. 29). These observations are congruent with
observations made in both bulk and single-cell ATAC-seq data2,32 and
likely explain, at least in part, the greater biological accuracy of DA
analysis for peaks in promoter regions. When considered in combi-
nationwith the observation that the accuracy of DA analysis continues
to benefit with increased sequencing depth up to at least 10,000
fragments per cell (Fig. 7a), these observations raise the possibility that
increased sequencing depth would specifically benefit DA analysis of
enhancers, although this possibility was not directly tested in the
present study.

Second, we observed that filtering peaks by log-fold change
between conditions did not consistently improve, and frequently
decreased, the accuracy of DA analysis (Fig. 5). Our preregistered
analysis involved removing equal proportions of peaks within each
dataset on the basis of a percentile threshold. The question arose as to
whether the imposition of a fixed fold-change threshold would affect
our conclusions. Therefore, we repeated these analyses when filtering
peakswith less than a two- or three-fold change between conditions. In
these experiments, we again observed that log-fold change filtering
didnot improve the concordanceofDAanalyses ofmatched single-cell
and bulk ATAC-seq (Supplementary Fig. 30), or between scATAC-seq
and scRNA-seq from the same cells (Supplementary Fig. 31), and often
substantially increased the number of false discoveries (Supplemen-
tary Fig. 32), all of which are consistent with the results of our initial,
prespecified analyses.

Third, the design of Experiments 1, 2, and 3 was preregistered
before the results of Experiment 6 became available. In view of the
observation that theperformanceof someDAmethodsbenefited from
binarization and/or alternative approaches to normalization, the
question arose as to how these preprocessing strategies would affect
the summary of DA methods shown in Fig. 9. A similar question arose
with respect to the observation that the concordance between single-
cell and matched bulk ATAC-seq was generally higher when calling
peaks in performance in ‘pseudobulks’ created from single-cell data.
To explore these points, we produced additional summary figures that
compared DA methods across all primary and secondary analyses in
Experiments 1 and 2 (Supplementary Fig. 33) and across all binarization
and normalization scenarios in Experiment 6 (Supplementary Fig. 34).
These analyses corroborated the observation that some DA methods
consistently achieved very good or very poor performance: for
instance, in Experiments 1 and 2, DESeq2-LRT ranked among the top
tercile of DA methods in all but two analyses, whereas negative bino-
mial regression, the binomial test, and Fisher’s exact test never ranked
among the top tercile in any analysis. Considering all binarization and
normalization approaches yielded rankings of DA methods that were
broadly consistentwith those shown in Fig. 9, butwith some important
differences: notably, SnapATAC::findDAR emerged as a top-
performing DA method with respect to concordance with matched
bulk ATAC-seq data, albeit not control of the falsediscovery rate, when
applied to binarized data.

Discussion
The increasingly broad adoption of technologies to interrogate the
epigenome at single-cell resolutionhas exposed a lack of consensus on
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how to analyse the resulting data. In this study, we formulated and
implemented a series of preregistered analyses that aimed to sys-
tematically compare statistical methods for DA analysis of epige-
nomics data. We carried out an extensive review of the literature to
identify all of the DA methods that had been applied in published
single-cell studies, and established an epistemological framework that
would enable a comparison of these methods with respect to their
biological accuracy and their propensity to produce false discoveries.
These analyses established that statistical methods that aggregated
individual cells to form ‘pseudobulks’ generally yielded DA results that
were better-aligned with orthogonal measurements of the same bio-
logical systems (i.e., matching bulk ATAC-seq or matching RNA-seq
from the same cells) than methods that treated individual cells as the
biologically relevant unit of observation. Our data further suggested
that these differences in performance could be attributed, at least in
part, to the appearance of false discoveries in DA analysis of individual
cells. In null comparisons of published scATAC-seq data, and in a series
of simulation studies, we found that themostwidely usedDAmethods
identified thousands of DA peaks in the absence of any underlying
biological differences. These false discoveries preferentially arose
from wider peaks and peaks accessible in a greater number of cells,
mirroring the tendency for false discoveries to arise from highly-
expressed genes in single-cell data49, and were abrogated both by
pseudobulk DA methods and by mixed-effects models that incorpo-
rated replicate as a random effect. Remarkably, models that made
identical assumptions about the underlying distribution of the count
data varied markedly in their ability to avoid false discoveries,
depending on whether and how they controlled for biological and
technical variation across replicates. Together, these findings suggest
that single-cell DA methods must account for technical or biological
variation between replicates in order to enable accurate DA analysis
and avoid a proliferation of false discoveries.

More broadly, our data emphasizes the importance of sound
experimental design for single-cell epigenomics studies. Even sub-
optimal statistical methods for DA analysis, which produced thou-
sands of false discoveries in comparisons involving small sample sizes,
could achieve good control of the false discovery rate in comparisons
of ten samples per experimental condition. Conversely, increasing the
number of cells profiled from a small number of replicates only exa-
cerbated the appearance of false discoveries. Moreover, we observed
that the number of false discoveries correlated with the intensity of
batch effects between replicates, as expected. Together, these obser-
vations highlight the importance of (i) minimizing batch effects during
data collection, (ii) profiling a sufficient number of samples, and (iii)
using appropriate statistical approaches to analyze the resulting data.

Beyond comparisons of individual methods for single-cell DA
analysis, we sought to use DA as a litmus test to identify best practices
for the analysis of single-cell epigenomicsdatamore generally. In some
cases, these analyses supported clear recommendations. For instance,
we found that filtering peaks by their log-fold change between con-
ditions did not consistently improve DA analysis, relative to removing
an equal number of peaks chosen at random. Moreover, in compar-
isons of approaches to the normalization of scATAC-seq data, we did
not identify any method that consistently improved performance
relative to log-TP10K normalization.We additionally observed a higher
degree of concordance between DA analyses of matched bulk and
single-cell ATAC-seq datasets when analyzing peaks called in ‘pseu-
dobulk’ samples created by pooling the single-cell data, which sup-
ports the widespread application of this approach to the analysis of
scATAC-seq data. In other cases, our results were more ambiguous.
Notably, we found that binarization reduced the biases of single-cell
DAmethods towards peaks accessible in a greater number of cells and
to broader peaks, and generally increased the concordance between
DA analyses of single-cell and matched bulk ATAC-seq data. Con-
versely, we found that the binarization did not always decrease (and

sometimes considerably increased) the number of false discoveries.
The improved biological accuracy of DA analysis when using binarized
data as input is at odds with the argument that binarization unne-
cessarily discards quantitative information embedded within scATAC-
seq data31,32. One possible interpretation of our data that could
reconcile this apparent paradox is that binarization generally reduces
the biases of DAmethods towardsmore accessible and broader peaks,
even for DA methods that are less affected by these biases in the first
place, and that mitigating these biases can outweigh the potential
negative effects of binarization, at least in the setting of DA analysis.
Moreover, previous work primarily studied the impact of binarization
on cell type identification within scATAC-seq data, and the data pre-
sented in this study does not formally exclude the possibility that
binarization may be helpful for some facets of scATAC-seq data ana-
lysis but not others. Future work will be necessary to more firmly
establish the mechanisms by which binarization may improve some
aspects of scATAC-seq data analysis.

In comparisons of scATAC-seq and matched bulk ATAC-seq data,
we generally observed that the AUCC was less than 0.5, with no DA
method achieving an AUCC greater than 0.52 in any primary or sec-
ondary analysis (Supplementary Fig. 1c). This observation could reflect
the presence of technical differences between bulk and single-cell
ATAC-seq, a universally poor performance of DA methods in either
single-cell or bulk ATAC-seqdata, or the properties of the AUCCmetric
itself.With respect to thefinalpossibility, it is noteworthy that Soneson
et al.55 previously observed that, in the context of scRNA-seq, applying
two different DE methods to the same dataset often yielded an AUCC
substantially lower than 0.5. Our data do not allow us to distinguish
between these potential mechanisms, and plausibly reflect a combi-
nation of all three possibilities.

Our study also has a number of limitations. First, our compar-
isons to parallel bulk ATAC-seq or multiome data leveraged high-
throughput assays carried out on matching samples (or even cells)
under identical experimental conditions, but a limitation of these
analyses is the requirement of the use of statistical methods for DA
and DE analysis in these parallel data sets. We carried out sensitivity
analyses to test the impact of leaving out any given bulk DA or DE
method, which supported the robustness of our conclusions. How-
ever, we cannot formally exclude the possibility that these compar-
isons favor single-cell DA methods that yield output more similar to
that of other methods in general, for technical rather than biological
reasons. Second, our comparison tomultiome data was based on the
premise that genes that are DE across biological conditions will also
tend to have DA promoters, but exceptions to this assumption are
known, notably during differentiation68. The majority of the com-
parisons that we propose entail the comparison of two fully differ-
entiated cell types, mitigating this concern to some degree. Third,
our approach to quantifying gene-level accessibility involved aggre-
gating reads around the transcription start site, which required the
specification of an arbitrary window within which reads were con-
sidered to be associated with promoter accessibility. Fourth, the
relative paucity of datasets with paired bulk ATAC-seq data from
identical biological conditions means that the datasets used in
Experiment 1 comparisons involved comparisons both between and
within cell types. However, these are comparisons with different
underlying biological motivations, and in particular, the effect sizes
of comparisons between cell types are likely to be larger than those
within cell types and across conditions.

We provide a common interface to all single-cell DA methods
described here by updating our existing R package, Libra (available
from GitHub at http://github.com/neurorestore/Libra). We provide a
vignette walking users through the analysis of an example dataset,
including easy-to-adapt code that we hope will empower users with
limited computational experience and resources to perform accurate
DA analysis.
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Methods
Single-cell DA methods
We selected eleven single-cell DA methods to compare in this Regis-
tered Report, on the basis that each of these methods had been
employed by at least two independent publications at the time of our
literature review (Fig. 1c). The complete list of DA methods that we
studied is as follows:
1. t-test
2. Wilcoxon rank-sum test
3. Logistic regression, using cell type or condition as the indepen-

dent variable (LRclusters)
4. Logistic regression, using binary peak accessibility as the inde-

pendent variable (LRpeaks)
5. Negative binomial regression
6. Fisher’s exact test
7. Binomial test
8. Permutation test
9. SnapATAC::findDAR
10. DESeq2 (Wald test and likelihood ratio test)
11. edgeR (quasi-likelihood F-test and likelihood ratio test)

For the t-test, Wilcoxon rank-sum test, negative binomial regres-
sion, and LRclusters, implementations from Seurat (version 3.1.5)35 were
used. The findDAR method was drawn from the SnapATAC package
(version 2.0). For LRpeaks, Fisher’s exact test, binomial test, and per-
mutation test, we developed optimized implementations for sparse
single-cell matrices. Finally, for DESeq2 and edgeR, we used the
implementations from the Libra package49.

We excluded computational tools that do not perform statistical
comparisons of individual genomic regions. For instance, we excluded
SCENIC, which performs topic modeling of peak matrices to simulta-
neously cluster peaks and cells69,70.

Evaluating single-cell DA methods with matched bulk data
Our survey of the literature identified five publications in which
matching single-cell and bulk epigenomics datawas collected from the
same population of purified cells and sequenced within the same
laboratory. The list of datasets incorporated in Experiment 1 was as
follows:
1. Corces et al.71 collected single-cell and bulk ATAC-seq data from

immunophenotypically purified leukemia stem cells (LSCs) and
leukemic blast cells (blasts) from donors with acute myeloid
leukemia. DA analysis was performed between LSCs and blasts.

2. Buenrostro et al.72 collected single-cell and bulk ATAC-seq data
from immunophenotypically defined human hematopoietic cell
types. For five of these cell types (common myeloid progenitor,
CMP; granulocyte-macrophage progenitor, GMP; hematopoietic
stem cell, HSC; megakaryocytic-erythroid progenitor, MEP; multi-
potent progenitor,MPP), at least two independent replicateswere
collected for both bulk and single-cell data. DA analysis was
performed between each pair of cell types.

3. Pliner et al.56 collected single-cell and bulk ATAC-seq data from
human skeletal muscle myoblasts, before (0 h) and after (72 h)
differentiation to myotubes. DA analysis was performed between
myoblasts and myotubes.

4. Satpathy et al.73 collected single-cell and bulk ATAC-seq data from
immunophenotypically defined CD4+ naive and memory T cell
subtypes. Among these cell types, naive CD4 +T cells and TH17
CD4 +T cells were profiled by both single-cell and bulk ATAC-seq
in at least two independent replicates. DA analysis was performed
between naive and TH17 CD4+ T cells.

5. Gonzalez-Blas et al.69 collected single-cell and bulk ATAC-seq data
from melanoma cell lines before (0 h) and 24, 48, or 72 h after
siRNA knockdown (KD) of SOX10. DA analysis was performed
between SOX10 KD cells at each timepoint and control cells.

FASTQ files were downloaded from GEO (see Data availability
statement for accessions) and demultiplexed using custom Python
scripts to confirm their availability for the proposed analyses. Demul-
tiplexed FASTQ files for both the single-cell and bulk datasets were
trimmed using Trim Galore (version 0.6.6) and aligned to the genome
using bwa (version 0.7.17)74, as implementedwithin SnapATAC34. Peaks
were called in the bulk data with MACS2 (version 2.2.6)75, and the
resulting peak set was used to obtain peak countmatrices for both the
bulk and single-cell data using SnapATAC.

DA analysis of the bulk ATAC-seq data was performed using three
widely-used statistical approaches to the analysis of bulk sequencing
data, including DESeq2 (version 1.38.1)76, edgeR (version 3.40.0)77, and
limma (version 3.54.0)78. Each of thesemethods was applied using two
distinct statistical approaches implemented within the relevant pack-
age (i.e.Wald test vs. likelihood ratio test in DESeq2; quasi-likelihood F-
test vs. likelihood ratio test in edgeR; and trend vs. voom in limma),
and the concordance was averaged over all six bulk DA methods. Our
expectation was that by considering several different approaches to
bulk DA analysis, wewould be able tomitigate the degree towhich our
conclusions are dependent on the results of any individual bulk DA
method. However, to confirm the robustness of our conclusions to the
inclusion of any individual bulk DA method, we also performed sec-
ondary analyses inwhichwe removed individual DAmethods from the
bulk analysis and re-computed the concordance between single-cell
and bulk DA.

Concordance between single-cell and bulk DA analyses was
quantified using the area under the concordance curve (AUCC)54, as
employed by previous studies of DE methods for single-cell tran-
scriptomics data49,55. This metric requires the specification of a
parameter k that determines the number of top-ranked peaks to be
compared in the calculation of the AUCC, on the basis of the p-values
assigned by each DA method. By default, we set the value of k to
5000; we selected this threshold based on our previous benchmark
of DE methods for single-cell transcriptomics, which used k = 500 to
calculate the AUCC, on the basis that there are typically about an
order of magnitude more peaks in scATAC-seq count matrices than
there are genes in snRNA-seq count matrices. However, we also
evaluated the sensitivity of our conclusions to the value of this
parameter by repeating the concordance analysis with k = 1000.
Moreover, because previous benchmarks of DE analysis in single-cell
transcriptomics data have established that the performance of some
statistical methods is contingent on filtering lowly-expressed genes
prior to analysis, we performed another secondary analysis in which
we filtered peaks open in less than 5% of cells (i.e., zero counts in
>95% of cells) in the single-cell data; no such filtering was applied in
the primary analysis.

Measuring concordance between DA analyses of single-cell and
bulk ATAC-seq requires a matching set of peaks to be defined in both
datasets. Inour primary analysis, weobtained sucha peak set by calling
peaks in the matched bulk ATAC-seq data, under the prespecified
hypothesis that analyzing bulk data would yield a higher-quality set of
peak definitions. However, this procedure is at odds with the design of
most scATAC-seq studies, which instead call peaks in ‘pseudobulks’
created from single-cell data; this is the strategy implemented in
widely used software packages such as Signac, ArchR, and SnapATAC.
This divergence raises the possibility that the relative performance of
single-cell DA methods might depend on the definitions of the peaks
provided as input. To evaluate this possibility, we performed a sec-
ondary analysis in which we repeated the calculation of concordance
using peaks called from ‘pseudobulks’ of single-cell data, adapting
code from Signac (version 1.13.0, function CallPeaks).

A related issue in the analysis of both single-cell and bulk ATAC-
seq data is that a certain proportion of peaks called by any computa-
tional method are generally thought to represent artifacts of data
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processing rather than true biological signal. To test whether these
artifactual peaks could influence the relative rankings of single-cell DA
methods, we performed an additional sensitivity analysis in which we
deliberately introduced a certain amount of artifactual peaks into the
dataset. We achieved this by performing a second round of peak
calling with MACS2 in the matched bulk ATAC-seq data at a deliber-
ately increased q-value threshold of 0.1. To avoid analyzing broader
peaks throughout the genome, we removed peaks that overlap with
the original peak set and then combined the remaining peaks with the
original peak set. We then conducted DA analysis using the expanded
peak set, in which many of the additional peaks are expected to be
artifactual. We repeated the analysis of concordance between single-
cell and bulk DA as described above, and used a linear model to for-
mally test for an interaction between DAmethod performance and the
peak set used as input.

A final issue that is relevant to single-cell DA analysis is whether
single-cell DA methods exhibit differential performance on peaks
located in enhancer versus promoter regions. Enhancer elements are
generally supported by fewer read counts thanpromoters in both bulk
and single-cell ATAC-seq data2,32, which raises the possibility that DA
inference will likely be less accurate in general for enhancer elements.
However, the question of whether certain DA methods are better-
suited for analysis of enhancer elements in single-cell data has not, to
our knowledge, previously been addressed. To evaluate this possibi-
lity, we repeated our analysis of DA concordance between single-cell
and matched bulk ATAC-seq data, but calculating concordance sepa-
rately for peaks located in enhancer versus promoter elements, as
derived from ENCODE Registry of Candidate cis-Regulatory
Elements79.

Evaluating single-cell DA methods with single-cell multi-omics
Our survey of the literature (Fig. 1a) identified three publications in
which matched RNA-seq and ATAC-seq data was collected from the
same nuclei, using multi-omic assays to profile at least two indepen-
dent replicates, and which involve a comparison between discrete cell
types or conditions. We supplemented these three datasets with our
own, newly-collectedmulti-omic dataset from themouse spinal cord80.
The list of datasets incorporated in Experiment 2 was therefore as
follows:
1. Arguelaguet et al.81 collected multi-omic data from 44,455 cells

across a time course of mouse embryonic development, then
defined cell types using the RNA modality. DA analysis was
performed between cell types in this dataset. To avoid conflating
peaks that are DA between cell types versus across differentiation
trajectories,we limited our analysis to a single timepoint (E8.5, the
timepoint with the greatest number of cells).

2. Boukhaled et al.82 collected multi-omic data from 16,544 periph-
eral blood mononuclear cells obtained from patients with
melanoma and healthy controls, then defined cell types using
the RNA modality. DA analysis was performed between cell types
in this dataset. To avoid conflating peaks that are DA between cell
types versus between healthy and diseased patients, we limited
our analysis to the healthy controls in this dataset.

3. Luecken et al.59 collected multi-omic data from 69,249 bone
marrow mononuclear cells obtained from healthy donors, then
defined cell types using both the RNA and ATAC modalities. DA
analysis was performed between cell types in this dataset.

4. Last, we collected a new multi-omic dataset comprising 40,526
cells from the mouse spinal cord before and after spinal cord
injury (SCI), and defined cell types using the RNA modality. DA
analysis was performed between cell types in this dataset.

Notably, for several of these datasets, the authors of the original
studies annotated dozens of cell types within the data, implying hun-
dreds of potential pairwise cell type comparisons. To mitigate the

influence of any single dataset on our results, we randomly selected a
maximum of 100 pairwise cell type comparisons per dataset.

For the scATAC-seq data, FASTQ files were downloaded fromGEO
and demultiplexed using SnapATAC, except for the Luecken et al.
dataset, for which only aligned BAM files were available, and our own
in-house dataset, for which aligned BAM files were likewise used. For
the remaining datasets, demultiplexed FASTQ files were trimmed with
Trim Galore and aligned to the genome using bwa, as implemented in
SnapATAC. Reads were aggregated around transcription start sites
(TSSs), using TSS definitions from GENCODE (human and mouse) and
a window of ±10 kb. To exclude the possibility that our results are
confounded by bidirectional promoters, we performed a sensitivity
analysis whereby all genes with overlapping windows around their
TSSs were excluded from the AUCC calculation. For the scRNA-seq
data, annotated count matrices were downloaded from GEO. A com-
plete list of accessions or URLs is provided in the Data availability
statement.

DE analysis of the scRNA-seq datawasperformed according to the
best practices established in our previous work49: specifically, we
aggregated cells of a given type within a biological replicate to form
pseudobulks, then applied the same six statistical methods described
above for the analysis of bulk ATAC-seq data in Experiment 1.We again
confirmed the robustness of our conclusions by removing individual
DE methods from the scRNA-seq analysis and then re-computing the
concordance between the ATAC and RNA modalities.

Concordance between the ATAC and RNA modalities was again
quantified using the AUCC, but here reverting the value of the para-
meter k to the default of 500 used in our previous work. We again
evaluated the sensitivity of our analysis to the value of this parameter
by re-calculating the concordance with k = 100 and k = 1000. More-
over, we repeatedour sensitivity analysis of low-abundance features by
filtering genes accessible in less than 1% of cells; no such filtering was
applied in the primary analysis.

Separately, we leveraged the gene-level activity scores to perform
parallel GO enrichment analyses of the ATAC and RNA modalities.
Gene set enrichment analysiswereperformedusing the ‘fgsea’ (version
1.25.1) R package83 with 106 permutations, using GO term annotations
from the Gene Ontology Consortium website and ranking genes in
descending order by the absolute value of the test statistic. GO terms
annotated to less than 10 or more than 1000 genes were removed to
mitigate the influence of very broad or very specific terms on the
analysis. Concordance between ATAC and RNA was evaluated using
the AUCC, using k = 100 by default with the rationale that fewer top-
ranked GO terms are generally of interest than are top-ranked genes.
We then repeated the sensitivity analyses described above, including
(i) removing individual DE methods from the scRNA-seq analysis, (ii)
varying the value of k (k = 50 or 500), and (iii) filtering genes accessible
in <1% of cells.

Previous work has shown that inferences about DE are generally
more accurate for highly expressed genes57,58. Conversely, identifying
instances of true DE among lowly-expressed genes can be highly
challenging49. These observations raised the possibility that inaccurate
inferences about DE for lowly-expressed genes could confound our
analysis. Therefore, we performed a final sensitivity analysis for both
the gene- and GO-level concordance, whereby we re-evaluated con-
cordance after excluding the bottom tercile of lowly-expressed genes
in the RNA modality.

False discoveries in single-cell DA analysis
To study the appearance of false discoveries in single-cell DA analysis,
we leveraged both published and simulated scATAC-seq data.

First, we repurposed the Luecken et al. dataset59 introduced in
Experiment 2 to create artificial comparisons between cells from
identical experimental conditions. Specifically, this dataset consists of
bone marrow mononuclear cells obtained from healthy donors,
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profiled in 13 independent replicates.We first re-processed the dataset
in order to analyze DA at the level of peaks, rather than gene activity
scores, by calling peaks with MACS2 and using SnapATAC to obtain a
peak count matrix. Then, for each cell type within the dataset, we
randomly dividedhalf of these replicates to anartificial ‘control’group,
and the other half to an artificial ‘treatment’group.We then performed
DA analysis between cells from randomly assigned replicates, and
computed the total number of DA peaks identified at a 5% false dis-
covery rate (FDR) using the ‘p.adjust’ function with method = ‘BH’.

We complemented this experiment with two simulation studies
that allowed us to more precisely control the presence and degree of
biological variation between libraries. First, we repurposed bulk ATAC-
seq libraries to simulate scATAC-seq data with no biological cell-to-cell
variation at all by randomly downsampling reads from bulk ATAC-seq
libraries to create simulated single-cell ATAC profiles. For this, bulk
ATAC-seq data of lymphoblastic cell lines (LCLs) from the 1000 Gen-
omes Project84 was downloaded from the ENA in CRAM format, and
decompressed to BAM format. Because the original dataset comprises
data from 100 individuals, we randomly selected a subset of six
libraries. For each of these bulk ATAC-seq libraries, we simulated a
scATAC-seq librarywith no cell-to-cell biological variationby randomly
sampling fragments with replacement into individual ‘cells’, adapting a
strategy proposed by the authors of SnapATAC34. We found that
sampling 0.1% of the fragments from each library into a dataset com-
prising 1000 cells yields simulated scATAC-seq data with a mean
number of fragments per cell that is comparable to our own scATAC-
seq data. Peak calling was performed on the aggregated single-cell
profiles from all 1000 cells, and a peak count matrix was obtained
using SnapATAC. We then divided half of the simulated scATAC-seq
replicates to an artificial ‘control’ group, and half of these replicates to
an artificial ‘treatment’ group, and performed DA analysis between
groups using the same single-cell DA methods as above. Performance
was measured by the total number of DA peaks identified by each
method at a 5% FDR.

To model biological and technical variation between cells more
precisely, we carried out a second simulation study using the Splatter
(version 3.10) package60. This approach has the advantage of allowing
exact control over the degree of technical variation between simulated
scATAC-seq libraries, whilemaintaining a realistic degree of cell-to-cell
biological variation. To this end, we fit the parameters of the simula-
tion based on our own newly-collected dataset from the mouse spinal
cord. We first re-processed this dataset in order to generate a peak
count matrix using MACS2 and SnapATAC (rather than a gene count
matrix, as in Experiment 2), and then estimated the parameters of the
simulation from the resulting peak count matrix using the ‘splatEsti-
mate’ function. The ‘splatSimulate’ function was then used to simulate
a range of scATAC-seq datasets, differing in the total number of cells
(100, 250, 500, 1000, or 2500 per condition); the total number of
libraries (2, 3, 4, 5, or 10 per condition); and the intensity of technical
variation between libraries (as controlled by the ‘de.loc’ parameter,
whichwas varied from0.5 to 2 in increments of 0.5). The proportionof
peaks affected by technical variation (the ‘de.prob’ parameter) was
fixed at 50%. Each of the resulting datasets then had the same number
of peaks as our own spinal cord dataset. We randomly assigned half of
the simulated scATAC-seq libraries to an artificial ‘control’ group, and
the other half to an artificial ‘treatment’ group. We then performed DA
analysis between randomly assigned groups, and calculated the total
number of DA peaks identified by each method at a 5% FDR.

Our past experience using Splatter to simulate scRNA-seq
data49,85–87 drew our attention to the fact that this package produces
simulated datasets in which every simulated library is sequenced to
identical depth. This is an unrealistic assumption, since real-world
libraries inevitably display some variation in sequencing depth. To
evaluate the impact of variation in sequencing depth on our conclu-
sions, we performed an additional sensitivity analysis. We first created

five downsampled versions of our own scATAC-seq dataset, whereby
each dataset was downsampled to between 50% and 90% of the full
depth, in increments of 10%. We then re-estimated simulation para-
meters separately from each downsampled dataset, as well as the full
dataset, and combined the six sets of simulation parameters to simu-
late a total of 1000 cells across six libraries, such that each library was
simulated from an independent set of simulation parameters. This
procedure afforded a simulated dataset identical to those described
above, except in that each of the libraries demonstrated a different
sequencing depth. We then randomly divided libraries into artificial
conditions, performed single-cell DA analysis, and calculated the
number of DA peaks at a 5% FDR.

We previously showed that, in DE analysis of single-cell RNA-seq
data, accounting for variation between biological replicates is required
to achieve control of the false discovery rate. Because some of the
single-cell DA methods analyzed here are capable of accounting for
this effect, we performed secondary analysis to test the impact of
incorporating biological replicate into the underlying model. Specifi-
cally, we explored the impact of adding replicate as a covariate to
LRclusters and negative binomial regression, using the ‘latent.vars’
argument implemented in the Seurat functionFindMarkers.Moreover,
because it may bemore appropriate to consider replicate as a random
effect rather than a fixed effect, we also explored the impact of fitting
negative binomial generalized linear mixed models (GLMMs), using
the fast approximations in the NEBULA (version v1.4.1) package61.

Biases of single-cell DA methods
We conducted a series of experiments using both real and simulated
data to evaluate the biases of methods for single-cell DA analysis.

We began by re-analyzing the same published scATAC-seq data-
sets examined in Experiment 1. We computed three properties for the
peaks called as DA by each method, including (i) the mean number of
counts supporting each peak across all cells (that is, the mean read
depth); (ii) the percentageof cells inwhich thatpeakwasopen; and (iii)
the width of that peak, in base pairs. To control for differences in the
total number of peaks called as DA by each statistical method, we
ranked peaks by their p-values and limit our analysis to the top-1000
DA peaks called by each method. We then performed a sensitivity
analysis by increasing or decreasing the number of top-ranked DA
peaks that are used to calculate the three summary statistics described
above (i.e., the top-500 or the top-5000 DA peaks).

We then re-analyzed the published and simulated scATAC-seq
dataset examined in Experiment 3. Here, we leveraged the ground
truth afforded by simulation studies to specifically characterize these
biases for peaks that are known to represent false discoveries. Speci-
fically, we binned peaks into deciles according to each of the three
peak properties, and computed both the absolute number as well as
the proportion of false discoveries arising from each decile. The
rationale of this analysis was to establish whether there was a rela-
tionship between the properties of a given peak (e.g., its overall pro-
pensity to be open across all cells in a study) and its likelihoodof being
spuriously identified as DA.

For the summary plot shown in Fig. 9, DA methods were binned
into terciles according to the mean rank of their top-1,000 DA peaks
across all three properties (i.e.,mean readdepth, percentage of cells in
which the peaks are accessible, mean width in base pairs).

Impact of log-fold change filtering
To study the impact of log-fold change filtering, we againmade use of
the matching bulk ATAC-seq and single-cell multi-omic datasets
employed in Experiments 1 and 2, respectively. We binned peaks
(genes) according to their deciles of absolute log-fold change in the
scATAC-seq data, and then removed the bottom 10% to 90% of peaks
(genes)with the lowest log-fold change ineachdataset. This procedure
was repeated after removing an equal number of peaks from the
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dataset at random. We then computed the difference in the AUCC
when filtering by log-fold change versus at random, and summarized
the difference across DA methods using Cohen’s d. Because log-fold
change estimates differ across software implementations, we stan-
dardized log-fold change calculation for all DAmethods using the code
implemented in the Seurat function FoldChange35 (Eq. 1):

fX 1 = gX 1,gi
, . . . , gX 1,gm

n o

, gX 1,gi
= 1

n1

Pn1
j Xgj + 1
� �

log FCð Þ= logðeeX 1 � 1Þ � logðeeX2 � 1Þ
ð1Þ

Separately, we evaluated the effect of log-fold change filtering on
the number of false discoveries in single-cell DA analysis. For this
purpose, we repeated the random comparisons of published scATAC-
seq data in Experiment 3, and compared the number of false dis-
coveries returned by each DA method after log-fold change filtering
versus random peak filtering.

Best practices for scATAC-seq analysis
To evaluate the impact of binarizing scATAC-seq data, we first
repeated the DA analysis of the scATAC-seq data used in Experiment
1 after binarizing the single-cell count matrices, and then re-
calculated the concordance with the bulk DA results as described
above. We then directly compared the AUCCs obtained from analysis
of binarized and non-binarized data, and summarized these differ-
ences with Cohen’s d. We carried out similar analyses of binarized
count matrices for the real and simulated datasets used in Experi-
ment 3, and re-calculated the number of false discoveries obtained
from DA analysis of binarized datasets. Last, we repeated our ana-
lyses of the properties of the top-1000 DA peaks (i.e., mean read
depth, proportion of cells in which the peak is open, and peak width)
in binarized versions of the same published scATAC-seq datasets) in
order to establish the impact of binarization on the biases of each DA
method.

We carried out a similar suite of analyses to study the impact of
various approaches to the normalization of scATAC-seq data. Whereas
most of the DA methods considered in this study operate directly on
count matrices or binarized data, three methods (t-test, Wilcoxon
rank-sum test, and LRclusters) are generally applied to normalized data,
with the expectation that normalization is required to produce biolo-
gically accurate results. To identify the most widely used methods for
normalizing scATAC-seq data for DA analysis, we reviewed the
approaches implemented by published scATAC-seq analysis
packages33–43. Based on this review, we complemented our analyses of
the log-counts per 10,000 normalization implemented by default in
Signac, which calls the NormalizeData function from Seurat (version
3.1.15), with additional DA analyses using the following additional
normalization strategies: (i) raw counts; (ii) scaling counts to a total of
10,000 per cell without log-transformation, using the “relative counts”
implementation in Signac; (iii) scaling counts to themedian number of
counts per cell33,36 without log-transformation; (iv) scaling counts to
themedian number of counts per cell with log-transformation; and (v)
TF-IDF normalization, as implemented in the Signac function RunT-
FIDF.We also evaluated the impact of a normalizationmethod recently
developed for bulk ATAC-seq data (‘smooth GC-full-quantile’)88 that
explicitly seeks to regress out technical properties of the underlying
sequencing data, notably GC bias. Software implementations from the
Signac package were used for all normalization strategies except
smoothGC-full-quantile, forwhich the implementation in theqsmooth
package (version 1.15.1) was used.

In the final experiment of this section, we evaluated the impact of
a proposed approach to controlling for technical covariates imple-
mented in the ArchR (version 1.0.1, function matchBiasCellGroups)
package33. Briefly, ArchR does not use all available cells in DA analysis
but rather performs a statistical test for DARs on a subset of all cells.

Specifically, for a given set of ‘foreground’ cells (e.g., cells of a user-
specified type), ArchR constructs a set of ‘background’ cells of equal
size that arematched according to some set of QC features. By default,
TSS enrichment and log10(# of fragments) are used to select a
matching set of ‘background’ cells. We compared the concordance
between DA analysis of scATAC-seq and matching bulk ATAC-seq
before and after applying this background matching procedure to
select a subset of cells for DA analysis.

The specific combination of input features (e.g., peaks called from
bulk ATAC-seq data versus from ‘pseudobulks’ of single-cell data),
normalization approaches, and binarization that are shown in every
figure or supplementary figure panel in the manuscript is provided in
Supplementary Data 3.

Data requirements for single-cell DA analysis
To study the impact of sequencing depth on DA analysis, we down-
sampled the datasets used in Experiment 1 to a mean of 500, 1000,
2000, 5000, or 10,000 fragment counts per cell. This was achieved by
using the ‘downsampleMatrix’ function from the ‘scuttle’ R package
(version 1.8.1) to perform downsampling on the entire matrix rather
than on a per-cell basis. We then repeated the AUCC analysis for each
downsampled dataset and calculated the difference in AUCC relative
to DA analysis with 10,000 counts per cell.

To study the impact of thenumber of cells profiledonDAanalysis,
we downsampled the datasets used in Experiment 2 to consider only
20, 50, 100, 200, 500, or 1000 cells per condition. Only the subset
comparisons from Experiment 2 that involved at least 1,000 cells per
groupwere used for this analysis. We then repeated the AUCC analysis
for each downsampled dataset and calculated the difference in AUCC
relative to DA analysis with 1,000 cells per condition.

Scalability of single-cell DA methods
Peak memory usage and wall time were monitored using the ‘peak-
RAM’ R package (version 1.0.3), for each of the DA analyses described
in Experiment 1 and 2. Because some of the DAmethods studied in this
Registered Report have different implementations in widely-used
analysis packages, including the Wilcoxon rank-sum test (Signac
FindMarkers vs. ArchR sparseMatWilcoxon), the t-test (Signac Find-
Markers vs. ArchR sparseMatTTest), and negative binomial regression
(Signac FindMarkers vs. glmGamPoi glm_gp67), we evaluated both
implementations of these DA methods.

Visualization
Throughout the paper, the box plots show the median (horizontal
line), interquartile range (hinges) and smallest and largest values no
more than 1.5 times the interquartile range (whiskers).

Statistics and reproducibility
Sample sizes were chosen based on a review of publicly available data
and were determined by the authors of the original studies. No sta-
tistical method was used to predetermine sample size. No data were
excluded from the analyses. The experiments were not randomized.
The investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All of the datasets analyzed in this study are publicly available. A
complete list of accessions or URLs is provided below. Simulated
datasets generated in this study and intermediate data files necessary
to reproduce our results are available via Zenodo (https://doi.org/10.
5281/zenodo.10687784).
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The complete list of accessions for published datasets is as
follows:

- Experiment 1: Evaluating single-cell DA methods with matched
bulk data

    - Corces et al.71: scATAC-seq, GSE74310; bulk ATAC-seq,
GSE74912

    - Buenrostro et al.72: scATAC-seq, GSE96772; bulk ATAC-seq,
GSE74912

    - Pliner et al.56: bulk and scATAC-seq, GSE109828
    - Satpathy et al.73: scATAC-seq, GSE107816; bulk ATAC-seq,

GSE107223
    - Gonzalez-Blas et al.69: bulk and scATAC-seq, GSE114557
- Experiment 2: Evaluating single-cell DA methods with single-cell
multi-omics

    - Arguelaguet et al.81: GSE205117
    - Boukhaled et al.82: GSE199994
    - Luecken et al.59: GSE194122
    - New multi-omic dataset of SCI: GSE230765
-Experiment 3: False discoveries in single-cell DA

    - Luecken et al.59: GSE194122
    - 1000 Genomes Project LCLs84: ERP110508 [https://www.ebi.

ac.uk/ena/browser/view/PRJEB28318].
Source data are provided with this paper.

Code availability
Source code necessary to reproduce our analyses is available via
GitHub (http://github.com/neurorestore/DA-analysis)89. Libra is avail-
able via GitHub (http://github.com/neurorestore/Libra).
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